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Chapter 1

Review

1.1 Statements and Logic

A statement is a sentence which is either true or false.
For example,

• i.
√

2 is a rational number (False)

• ii. Exactly 1323 bald eagle were born in 2000 B.C. (Not a statement)

• iii. π is a real number (True)

Let P and Q be statements. The corresponding truth table with various
operators looks like:

P Q PandQ
T T T
T F F
F T F
F F F

P Q PorQ
T T T
T F T
F T T
F F F

P notP
T F
F T

P Q P =⇒ Q
T T T
T F F
F T T
F F T

P Q Q or not P
T T T
T F F
F T T
F F T

P Q P⇐⇒ Q
T T T
T F F
F T F
F F T

P Q not Q =⇒ not P
T T T
T F F
F T T
F F T

P⇐⇒ Q means that P is true if and only if Q is true.
As we see from the tables above, P =⇒ Q ⇐⇒ not Q =⇒ not P.
Also ((P and Q) or R) ⇐⇒ ((P or R) and (Q or R)).

Theorem 1.1.1. (Principal Substitution) Let Φ(x) be a formula involving a
variable x. For an object d, let Φ(d) be the formula obtained from Φ(x) by
replacing all occurances of x by d. If a and b are objects with a = b, then Φ(a)
= Φ(b). Φ(x) is then known as a well-defined function.
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1.2 Sets

A set is a collection of objects.
For example,
The set of integers Z:= {...,−2,−1, 0, 1, 2, ...}.

1.4 Mathematical Induction

Theorem 1.4.1. (Principal os Mathematical Induction) Suppose that for each
n ∈ N, a statement P(n) is given and that

(i) P(0) is true.
(ii) If P(k) is true for some k ∈ N, then P(k+1) is also true.

Then P(n) is true ∀n ∈ N.

1.5 Equivalence Relation

Definition 1.5.1. Let ∼ be a relation on a set A (that is a relation from A and
A). Then

(a) ∼ is called reflexive if a∼a ∀a ∈ A
(b) ∼ is called symmetric if b∼a ∀a,b ∈ A with a∼b, i.e. a∼b ⇐⇒ b∼a
(c) ∼ is called transitive if a∼c ∀a,b,c ∈ A with a∼b and b∼c, i.e. (a∼b)

and (b∼c) =⇒ a∼c
∼ is called an equivalence relation if ∼ is reflexive, symmetric and transitive.

Examples:
(1) Consider the relation ”≤” on the real numbers.

Not symmetric because 1≤2 but 2�1 and hence, ”≤” is not an equiva-
lence relation.

(2) Consider the relation ”=” on the real numbers.
”=” is an equivalence relation because it is reflexive, symmetric and tran-

sitive.

(3) Consider the relation ”r∼s if |r| = |s|”.
”r∼s if |r| = |s|” is an equivalence relation because it is reflexive, sym-

metric and transitive

Let a ∈ Z. Then [a]n is the equivalence class with respect to ”≡(mod n)”.
Consider the relation ”≡(mod 2)”:

[1]2 = {b ∈ Z | 1 ≡ b(mod2)}
= {b ∈ Z | b is odd}

[0]2 = {b ∈ Z | 0 ≡ b(mod2)}
= {b ∈ Z | b is even}
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Consider the relation ”≡(mod 5)”:
[0]5 = {5k | k ∈ Z}

= {...,−10,−5, 0, 5, 10, ...}
[1]5 = {5k + 1 | k ∈ Z}

= {...,−9,−4, 1, 6, 11, ...}
[2]5 = {5k + 2 | k ∈ Z}

= {...,−8,−3, 2, 7, 12, ...}
[3]5 = {5k + 3 | k ∈ Z}

= {...,−7,−2, 3, 8, 13, ...}
[4]5 = {5k + 4 | k ∈ Z}

= {...,−6,−1, 4, 9, 14, ...}

Let ∼ be an equivalence relation on the set A and a, b ∈ A. The the fol-
lowing statements are equivalent:

(a) a∼b
(b) b∈[a]
(c) [a]∩[b]6= φ
(d) [a]=[b]
(e) a∈[b]
(f) b∼a
where [a]:= {b ∈ A | a ∼ b}

Proof. 1. (a) =⇒ (b). Suppose that a∼b. Since, [a]:= {b ∈ A | a ∼ b} =⇒
b ∈[a].

2. (b) =⇒ (c). Suppose that b∈[a]. Since, ∼ is reflexive, b∼b. So, b∈[b].
Thus, b∈ [a] ∩ [b]. Therefore, [a]∩[b]6= φ.

3. (c) =⇒ (d). Suppose that [a]∩[b]6= φ, then ∃c such that c∈[a]∩[b].
Let d∈[a]. Then, a∼d and since, c∈[a], a∼c, and also, c∼a. So, by transitivity,
c∼d, we know that c∈[b] =⇒ c∼b =⇒ d∈[b] =⇒ [a]⊆[b].

4. (d) =⇒ (e). Suppose that [a]=[b]. Since, a is reflexive, a∼a, so a∈[a].
Since, [a] = [b], a∈[b].

5. (e) =⇒ (f). Suppose a∈[b]. Also, [b]:= {e ∈ A | b ∼ e}. So, b∼a.
6. (f) =⇒ (a) by symmetricity.
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Chapter 3

Rings

3.1 Definitions and Examples of Rings

Definition 3.1.1. A ring is a triple (R, +, *) such that
(i) R is a set
(ii) ’+’ is a function (called Ring Addition) and RxR is a subset of the do-

main of ”+”. For (a,b)∈RxR, a+b denotes the image of (a,b) under ’+’
(iii) ’*’ is a function (called Ring Multiplication) and RxR is a subset of the

domain of ”*”. For (a,b)∈RxR, a*b (and also ab) denotes the image of (a,b)
under ’*’
and such that the following axioms hold:
(Ax1) a+b∈R for all a,b∈R (closure of addition)
(Ax2) a+(b+c) = (a+b)+c for all a,b,c∈R (associative addition)
(Ax3) a+b = b+a for all a,b∈R (commutative addition)
(Ax4) ∃ an element in R, denoted by 0R(called the zero-R) such that a = a +
0R and a = 0R + a for all a∈R (additive identity)
(Ax5) For each a∈R, there exists an element in R, denoted by -a (negative a)
such that a + (-a) = 0R (additive inverse)
(Ax6) ab∈R for all a,b∈R (closure of multiplication)
(Ax7) a(bc) = (ab)c for all a,b,c∈R (associative multiplication)
(Ax8) a(b+c) = ab + bc for all a,b,c∈R (distributive laws)

Examples:
(Q,+,*) is a ring
(N,+,*) is a not ring as it does not have 0R
(M2(R),+,*) is a ring, where M2(R) is a 2x2 matrix over R

Definition 3.1.2. Let R be a ring. Then R is called commutative if
(Ax9) ab = ba for all a,b∈R (commutative multiplication)

Definition 3.1.3. Let R be a ring. We say that R is a ring with identity if ∃
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an element, denoted by 1R(called one-R) such that
(Ax10) a = 1R*a = a*1R for all a∈R. (multiplicative identity)

Examples:
(a) (Z,+,*) is a commutative ring with identity.
(b) (Q,+,*) is a commutative ring with identity.
(c) (C,+,*) is a commutative ring with identity.
(d) (R,+,*) is a commutative ring with identity.
(e) Let 2Z be the set of even integers. Then (2Z,+,*) is a commutative ring

without identity.
(f) Let n∈ Z and n >1. The set Mn(R of nxn matrices with real coef-

ficients together with the usual addition and multiplication of matrices is a
non-commutative ring with identity.

Definition 3.1.4. An integral domain is a commutative ring R with identity
1R 6= 0R that satisfies:
(Ax11) whenever a,b∈R and ab=0R, then a=0R or b=0R.

Example: (Z,+,*) is an integral domain

Definition 3.1.5. A field is a commutative ring R with identity 1R 6= 0R that
satisfies:
(Ax12) for each a 6= 0R in R, the equation ax=1R has a solution in R.

Example: (R,+,*) is a field.

Theorem 3.1.1. Let R and S be rings. Define addition and multiplication on
the Cartesian product RxS = {(r, s) | r ∈ R, s ∈ S} by

(r,s) + (r’,s’) = (r+r’,s+s’) and
(r,s)(r’,s’) = (rr’,ss’)

for all r,r’∈R, s,s’∈S. Then,
1. RxS is a ring.
2. 0RxS = (0R,0S).
3. -(r,s) = (-r,-s) for all r∈R, s∈S
4. if R and S are both commutative, then so is RxS.
5. if R and S both have an identity, then RxS has an identity and 1RxS =

(1R,1S).

Subrings

If R is a ring and S is a subset of R, then S may or may not be a ring under the
operations in R.
In the ring Z of integers, for example, the set of even numbers is a ring, but the
set of off numbers is not.

Definition 3.1.6. When a subset of a ring R is itself a ring under the addition
and multiplication in R, then we sat that S is a subring of R.
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Example:
(a) Z is a subring of ring Q
(b) Q is a subring of ring R
(c) Since Q is itself a field, Q is a subfield of ring R

Theorem 3.1.2. Suppose that R is a ring and that S is a subset of R, such
that

(i) S is closed under addition (if a,b∈S, then a+b∈S)
(ii) S is closed under multiplication (if a,b∈S, then ab∈S)
(iii) 0R ∈S
(iv) If a∈S, then the solution of the equation a + x = 0R is in S. Then S is

a subring of R.
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3.2 Basic Properties of Rings

Theorem 3.2.1. For any element in a ring R, the equation a + x = 0R has a
unique solution.

Proof. We know that a + x = 0R has at least one solution, say u, by Axiom 5.
If ”v” is also a solution then a + v = 0R and a + u = 0R, so that

v = 0R + v = (a + u) + v = (u + a) + v = u + (a + v) = u + 0R = u.
So, v = u and u is the only solution.

-a is the unique element in R such that a + (-a) = (-a) + a = 0R.

Theorem 3.2.2. If a + b = a + c in a ring R, then b = c.

Proof. Adding -a to both sides of a + b = a + c and then associativity and
negatives, we see that

-a + (a + b) = -a + (a + c)
(-a + a) + b = (-a + a) + c
0R + b = 0R + c
b = c

Theorem 3.2.3. For any elements a and b or a ring R,
(1) a*0R = 0R
(2) a*(-b) = -(ab) = (-a)b
(3) -(a+b) = (-a)+(-b)
(4) -(a-b) = -(a) + b
(5) (-a)(-b) = ab
(6) (-1R)*a = -a

Proof. (1) Since 0R + 0R = 0R and a*(0R + 0R) = a*0R + a*0R,
a*(0R + 0R) = a*0R + 0R.
From Theorem 3.2.2, if a*0R + a*0R = a*0R + 0R, then a*0R = 0R.

(2) By definition, -(ab) is the unique solution of the equation
ab + x = 0R, and so any other solution of this equation must be equal
to -(ab). But x = a(-b) is a solution because, by distributive law and (1),

ab + a(-b) = a[b + (-b)] = a[0R] = 0R.
Therefore, a(-b) = -(ab).
The rest of the parts are proved in similar fashion.

(3) By definition, -(a+b) is the unique solution of (a+b) + x = 0R,
but (-a) + (-b) is also a solution:

(a+b) + [(-a) + (-b)] = b + [a + (-a)] + (-b) = (b + 0R) + (-b) =
b + (-b) = 0R.
Therefore, by uniqueness, -(a+b) = (-a) + (-b).

(4) By definition, -(a - b) = -(a + (-b)) and by (4) and -(-a) = a,
-(a-b) = -(a + (-b)) = (-a) + (-(-b)) = (-a) + b.
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(5) By -(-a) = a and repeated use of (2),
(-a)(-b) = -[a(-b)] = -[-(ab)] = ab.

(6) By (2),
(-1R)*a = -(1R*a) = -(a) = -a.

Definition 3.2.1. An element a in a ring R with identity is called a unit if
∃u ∈ R : au = 1R = ua. In this case, the element u is called the multiplicative
inverse of a and is denoted by a−1.

Example:
(1) In Q: All numbers are units
(2) In Z: -1 and 1 are the only units

Theorem 3.2.4. Every field F is an integral domain if a field is a commutative
ring with 1R.

Proof. ∀a ∈ F, a−1 exists. We need to show that if ab = 0R, then either a = 0R
or b = 0R.
Let ab = 0R. We know that a−1 exists. So, (a−1)(ab) = (a−1a)b = 1Rb = b.
But, (a−1)(ab) = (a−1)*0R = 0R. So, b = 0R.

Definition 3.2.2. An element a in a ring R is a zero divisor if
(1) a 6= 0R
(2) ∃b 6= 0R, b ∈ R : ab = 0R or ba = 0R.

Finding units in Z12 trick:
If greatest-common-divisor(a,12) = 1, then a is a unit,
else if greatest-common-divisor(a,12) >1, then a is a zero divisor.

Theorem 3.2.5. Every finite integral domain R is a field.

Proof. Since R is a commutative ring with identity 1R, we only need to show
∀a 6= 0R, the equation ax = 1R has a solution.

Let a1, a2, ..., an be the elements of R. Suppose at 6= 0R. Then, ata1, ata2, ..., atan
is also R. If ai 6= aj , then we must have atai 6= ataj (because if atai = ataj =⇒
ai = aj . (atai − ataj = 0R, at(ai − aj) = 0R =⇒ at = 0R or ai = aj , but at 6=
0R, so ai = aj).
Therefore, ata1, ata2, ..., atan are n distinct elements of R. However, R has ex-
actly n elements all together, and so these must be all the elements of R in some
order. For some j, ataj = 1R. Therefore, ax = 1R has a solution and R is a
field.

Sample Exercise: Let R be a ring such that x2 = x ∀x ∈ R. Prove that R is
commutative.
Solution:
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We have to show that xy = yx ∀x, y ∈ R
x2 = x
x + x = 2x
(x+ x)2 = (2x)2 = 4x2 = 4x
However, (2x)2 = 2x. So, 2x = 4x =⇒ 2x = 0R.

(x+ y)2 = x + y
=⇒ x2 + y2 + xy + yx = x + y
=⇒ x + y + xy + yx = x + y
=⇒ xy + yx = 0R
=⇒ xy + yx - 2(xy) = 0R
=⇒ yx = xy
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3.3 Isomorphisms and Homomorphisms

Definition 3.3.1. A ring R is isomorphic to a ring S (denoted by R∼=S) if
there is a function f:R→S such that

(i) f is injective
(ii) f is surjective
(iii) f(a+b) = f(a) + f(b) and f(ab) = f(a)f(b) ∀a, b ∈ R The function f is

called an isomorphism.

Definition 3.3.2. Let R and S be rings. A function f:R→S is said to be
homomorphic if

f(a+b) = f(a) + f(b) and f(ab) = f(a)f(b) ∀a, b ∈ R

Hence, every isomorphism is a homomorphism.

Theorem 3.3.1. Let f:R→S be a homomorphism of rings. Then
(1) f(0R) = 0S
(2) f(-a) = -f(a) ∀a ∈ R
(3) f(a-b) = f(a) - f(b) ∀a, b ∈ R

If R is a ring with identity, and f is surjective then
(4) S is a ring with identity and f(1R) = 1S
(5) whenever there is a unit in R, then f(u) is a unit in S and

f(u−1) = (f(u))−1.

Proof. (1) ∀a ∈ R, a+ 0R = a.
f(a + 0R) = f(a) + f(0R) (by homomorphism)
=⇒ f(a) = f(a) + f(0R). So, f(0R) is the addition identity in S.

(2) f(a) + f(-a) = f(a-a) (by homomorphism)
= f(0R) = 0S .

Since, f(a)∈S, which is also a ring, f(a) has an additive inverse such that
f(a) + (-f(a)) = 0S . Hence, f(-a) = -f(a).

(3) f(a + (-b)) = f(a) + f(-b) = f(a) - f(b) (by (2))

(4) ∀a ∈ R, f(a) = f(a*1R) = f(a)*f(1R) (by homomorphism)
Then f(1R) is the multiplicative identity in S and f(1R) = 1S .

(5) Since u is a unit in R, ∃v ∈ R such that uv = 1R = vu.
Hence by (4),

f(u)f(v) = f(uv) = f(1R) = 1S .
Similarly, vu = 1R implies that f(v)f(u) = 1S .
Therefore, f(u) is a unit in S where (f(u))−1 = f(v).
Since, v = u−1, (f(u))−1 = f(u−1).

Corollary 3.3.1.1. If f:R→S is a homomorphism of rings, then the image of f
is a subring of S.
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Proof. We need to check if f(R) is a subring.
(Subring Ax3) 0R ∈ S

f(0R) = 0S . Hence, 0S ∈ f(R)
(Subring Ax1) f(a+b) = f(a) + f(b), where f(a)∈f(R) and f(b)∈f(R) (by
homomorphism)
(Subring Ax2) f(ab) = f(a)f(b), where f(a)∈f(R) and f(b)∈f(R) (by
homomorphism)
(Subring Ax4) Addition inverse holds by Theorem 3.3.1 (2)
Hence, f(R) is a subring.

Questions:-
(1) Does homomorphism exist between Q and Z?
Answer: Q has infinitely many units whereas Z has only two units: -1, 1. So no
homomorphism exists.

(2) Prove Z12
f−→ Z3 x Z4.

Answer:
Identity of Z12 = 1
Identity of Z3 x Z4 = (1,1)
Hence, f(1) = (1,1)
f(2) = f(1 + 1) = f(1) + f(1) = (1,1) + (1,1) = (2,2)
f(3) = (0,3)
f(4) = (1,0)
f(5) = (2,1)
f(6) = (0,2)
f(7) = (1,3)
f(8) = (2,0)
f(9) = (0,1)
f(10) = (1,2)
f(11) = (2,3)
f(0) = (0,0)
Hence, f is Injective and Surjective.
f(a+b) = f(a) + f(b)
f([a]12 + [b]12) = f([a+ b]12) = ([a+ b]3,[a+ b]4) = ([a]3 + [b]3, [a]4 + [b]4) =

([a]3, [a]4)+([b]3, [b]4) = f([a]12) + f([b]12)
Hence, f is isomorphic.

Question: For Z4 and Z2 x Z2, check if isomorphic.
Answer:

Cardinality is the same.
f(1) = (1,1) (identity maps to identity)
f(1 + 1) = (0,0)
f(0) = (0,0) = f(2).
f is not injective so no isomorphic.
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Question: For Z8 and Z2 x Z4, check if isomorphic.
Answer:

Cardinality is the same.
f(1) = (1,1) f(1 + 1) = (0,2)
f(4) = (0,0) = f(0).
f is not injective so no isomorphic.

Trick: Zm∗n ∼= Zm x Zn ⇐⇒ greatest-common-divisor(n,m) = 1 (i.e. m
and n are relatively prime).

Theorem 3.3.2. Suppose R is a commutative ring and f:R→S is an isomor-
phism. Then, S is also a commutative ring.

Proof. ∀a, b ∈ R, ab = ba. f(ab) = f(a)f(b). Also, f(ba) = f(b)f(a). So, f(ab)
= f(ba). Hence, S is commutative. Furthermore, by surjective property for any
c,d in S, we can always find two elements a and b such that f(a) = c and f(b)
= d. For any two elements in S, show that cd = dc, i.e. show whether f(ab) =
f(a)f(b) = f(b)f(a) = f(ba) where a6=b.
Since ab = ba, S is commutative.

M2(R) =

{(
a b
c d

)
| a, b, c, d ∈ R

}
� R4 because

{(
a b
c d

)
| a, b, c, d ∈ R

}
is non-commutative and R4 is commutative.

Checking for isomorphism:
(1) Cardinality
(2) Both commutative
(3) Add several times until 0 is achieved.
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