MTH 310: Abstract Algebra - Notes

Debayan Deb
Spring 2015

## Chapter 1

## Review

### 1.1 Statements and Logic

A statement is a sentence which is either true or false.
For example,

- i. $\sqrt{2}$ is a rational number (False)
- ii. Exactly 1323 bald eagle were born in 2000 B.C. (Not a statement)
- iii. $\pi$ is a real number (True)

Let P and Q be statements. The corresponding truth table with various operators looks like:

| P | Q | PandQ | P | Q | Por Q |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | T | T |
| T | F | F | T | F | T |
| F | T | F | F | T | T |
| F | F | F | F | F | F |


| P | $\operatorname{not} P$ |
| :---: | :---: |
| T | F |
| F | T |


| P | Q | $\mathrm{P} \Longrightarrow \mathrm{Q}$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | F |
| F | T | T |
| F | F | T |


| P | Q | Q or not P |
| :---: | :---: | :---: |
| T | T | T |
| T | F | F |
| F | T | T |
| F | F | T |


| P | Q | $\mathrm{P} \Longleftrightarrow \mathrm{Q}$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | F |
| F | T | F |
| F | F | T |


| P | Q | $\operatorname{not} \mathrm{Q} \Longrightarrow \operatorname{not} \mathrm{P}$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | F |
| F | T | T |
| F | F | T |

$\mathrm{P} \Longleftrightarrow \mathrm{Q}$ means that P is true if and only if Q is true.
As we see from the tables above, $\mathrm{P} \Longrightarrow \mathrm{Q} \Longleftrightarrow$ not $\mathrm{Q} \Longrightarrow$ not P .
Also $((\mathrm{P}$ and Q$)$ or R$) \Longleftrightarrow((\mathrm{P}$ or R$)$ and $(\mathrm{Q}$ or R$))$.
Theorem 1.1.1. (Principal Substitution) Let $\Phi(x)$ be a formula involving a variable $x$. For an object d, let $\Phi(d)$ be the formula obtained from $\Phi(x)$ by replacing all occurances of $x$ by $d$. If $a$ and $b$ are objects with $a=b$, then $\Phi(a)$ $=\Phi(b) . \Phi(x)$ is then known as a well-defined function.

### 1.2 Sets

A set is a collection of objects.
For example,
The set of integers $\mathbb{Z}:=\{\ldots,-2,-1,0,1,2, \ldots\}$.

### 1.4 Mathematical Induction

Theorem 1.4.1. (Principal os Mathematical Induction) Suppose that for each $n \in \mathbb{N}$, a statement $P(n)$ is given and that
(i) $P(0)$ is true.
(ii) If $P(k)$ is true for some $k \in \mathbb{N}$, then $P(k+1)$ is also true.

Then $P(n)$ is true $\forall n \in \mathbb{N}$.

### 1.5 Equivalence Relation

Definition 1.5.1. Let $\sim$ be a relation on a set A (that is a relation from A and A). Then
(a) $\sim$ is called reflexive if $a \sim \mathrm{a} \forall \mathrm{a} \in \mathrm{A}$
(b) $\sim$ is called symmetric if $\mathrm{b} \sim \mathrm{a} \forall \mathrm{a}, \mathrm{b} \in \mathrm{A}$ with $\mathrm{a} \sim \mathrm{b}$, i.e. $\mathrm{a} \sim \mathrm{b} \Longleftrightarrow \mathrm{b} \sim \mathrm{a}$
(c) $\sim$ is called transitive if $\mathrm{a} \sim \mathrm{c} \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{A}$ with $\mathrm{a} \sim \mathrm{b}$ and $\mathrm{b} \sim \mathrm{c}$, i.e. $(\mathrm{a} \sim \mathrm{b})$ and $(b \sim c) \Longrightarrow a \sim c$
$\sim$ is called an equivalence relation if $\sim$ is reflexive, symmetric and transitive.

## Examples:

(1) Consider the relation " $\leq$ " on the real numbers.

Not symmetric because $1 \leq 2$ but $2 \not \leq 1$ and hence, " $\leq "$ is not an equivalence relation.
(2) Consider the relation " $=$ " on the real numbers.
$"="$ is an equivalence relation because it is reflexive, symmetric and transitive.
(3) Consider the relation " $\mathrm{r} \sim \mathrm{s}$ if $|\mathrm{r}|=|\mathrm{s}|$ ".
$" r \sim s$ if $|r|=|s| "$ is an equivalence relation because it is reflexive, symmetric and transitive

Let $\mathrm{a} \in \mathbb{Z}$. Then $[a]_{n}$ is the equivalence class with respect to " $\equiv(\bmod \mathrm{n})$ ". Consider the relation " $\equiv(\bmod 2)$ ":

$$
\begin{aligned}
{[1]_{2} } & =\{b \in \mathbb{Z} \mid 1 \equiv b(\bmod 2)\} \\
& =\{b \in \mathbb{Z} \mid b \text { is odd }\} \\
{[0]_{2} } & =\{b \in \mathbb{Z} \mid 0 \equiv b(\bmod 2)\} \\
& =\{b \in \mathbb{Z} \mid b \text { is even }\}
\end{aligned}
$$

Consider the relation $" \equiv(\bmod 5) "$ :

$$
\begin{aligned}
{[0]_{5} } & =\{5 k \mid k \in \mathbb{Z}\} \\
& =\{\ldots,-10,-5,0,5,10, \ldots\} \\
{[1]_{5} } & =\{5 k+1 \mid k \in \mathbb{Z}\} \\
& =\{\ldots,-9,-4,1,6,11, \ldots\} \\
{[2]_{5} } & =\{5 k+2 \mid k \in \mathbb{Z}\} \\
& =\{\ldots,-8,-3,2,7,12, \ldots\} \\
{[3]_{5} } & =\{5 k+3 \mid k \in \mathbb{Z}\} \\
& =\{\ldots,-7,-2,3,8,13, \ldots\} \\
{[4]_{5} } & =\{5 k+4 \mid k \in \mathbb{Z}\} \\
& =\{\ldots,-6,-1,4,9,14, \ldots\}
\end{aligned}
$$

Let $\sim$ be an equivalence relation on the set A and $a, b \in A$. The the following statements are equivalent:
(a) $a \sim b$
(b) $\mathrm{b} \in[\mathrm{a}]$
(c) $[\mathrm{a}] \cap[\mathrm{b}] \neq \phi$
(d) $[\mathrm{a}]=[\mathrm{b}]$
(e) $a \in[b]$
(f) $\mathrm{b} \sim \mathrm{a}$
where $[a]:=\{b \in A \mid a \sim b\}$
Proof. 1. (a) $\Longrightarrow$ (b). Suppose that a~b. Since, $[\mathrm{a}]:=\{b \in A \mid a \sim b\} \Longrightarrow$ $b \in[a]$.
2. $(\mathrm{b}) \Longrightarrow(\mathrm{c})$. Suppose that $\mathrm{b} \in[\mathrm{a}]$. Since, $\sim$ is reflexive, $\mathrm{b} \sim \mathrm{b}$. So, $\mathrm{b} \in[\mathrm{b}]$. Thus, $\mathrm{b} \in[a] \cap[b]$. Therefore, $[\mathrm{a}] \cap[\mathrm{b}] \neq \phi$.
3. $(c) \Longrightarrow(d)$. Suppose that $[a] \cap[b] \neq \phi$, then $\exists c$ such that $c \in[a] \cap[b]$. Let $d \in[a]$. Then, $a \sim d$ and since, $c \in[a]$, $a \sim c$, and also, $c \sim a$. So, by transitivity, $c \sim d$, we know that $c \in[b] \Longrightarrow c \sim b \Longrightarrow d \in[b] \Longrightarrow[a] \subseteq[b]$.
4. $(d) \Longrightarrow$ (e). Suppose that $[a]=[b]$. Since, $a$ is reflexive, $a \sim a$, so $a \in[a]$. Since, $[\mathrm{a}]=[\mathrm{b}], \mathrm{a} \in[\mathrm{b}]$.
5. $(\mathrm{e}) \Longrightarrow(\mathrm{f})$. Suppose $\mathrm{a} \in[\mathrm{b}]$. Also, $[\mathrm{b}]:=\{e \in A \mid b \sim e\}$. So, $\mathrm{b} \sim \mathrm{a}$.
6. (f) $\Longrightarrow$ (a) by symmetricity.

## Chapter 3

## Rings

### 3.1 Definitions and Examples of Rings

Definition 3.1.1. A ring is a triple $\left(\mathrm{R},+,^{*}\right)$ such that
(i) R is a set
(ii) ' + ' is a function (called Ring Addition) and RxR is a subset of the domain of " + ". For $(\mathrm{a}, \mathrm{b}) \in \mathrm{RxR}, \mathrm{a}+\mathrm{b}$ denotes the image of $(\mathrm{a}, \mathrm{b})$ under ' + '
(iii) ${ }^{*}$ ' is a function (called Ring Multiplication) and RxR is a subset of the domain of "*". For ( $a, b) \in R x R$, $a * b$ (and also $a b$ ) denotes the image of ( $a, b$ ) under ${ }^{*}$,
and such that the following axioms hold:
(Ax1) $a+b \in R$ for all $a, b \in R$
(closure of addition)
$(A \times 2) a+(b+c)=(a+b)+c$ for all $a, b, c \in R$ (associative addition)
(Ax3) $a+b=b+a$ for all $a, b \in R$
(commutative addition)
(Ax4) $\exists$ an element in R , denoted by $0_{R}$ (called the zero-R) such that $\mathrm{a}=\mathrm{a}+$ $0_{R}$ and $\mathrm{a}=0_{R}+\mathrm{a}$ for all $\mathrm{a} \in \mathrm{R} \quad$ (additive identity)
(Ax5) For each $a \in R$, there exists an element in $R$, denoted by -a (negative a) such that $\mathrm{a}+(-\mathrm{a})=0_{R}$
(additive inverse)
(Ax6) $\mathrm{ab} \in \mathrm{R}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$
(closure of multiplication)
$(\mathrm{Ax} 7) \mathrm{a}(\mathrm{bc})=(\mathrm{ab}) \mathrm{c}$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$
(associative multiplication)
$(A x 8) a(b+c)=a b+b c$ for all $a, b, c \in R$
(distributive laws)

## Examples:

$\left(\mathbb{Q},+,{ }^{*}\right)$ is a ring
$\left(\mathbb{N},+,{ }^{*}\right)$ is a not ring as it does not have $0_{R}$
$\left(M_{2}(\mathbb{R}),+{ }^{*}\right)$ is a ring, where $M_{2}(\mathbb{R})$ is a 2 x 2 matrix over $\mathbb{R}$

Definition 3.1.2. Let $R$ be a ring. Then $R$ is called commutative if $(A x 9) a b=b a$ for all $a, b \in R$
(commutative multiplication)
Definition 3.1.3. Let $R$ be a ring. We say that $R$ is a ring with identity if $\exists$
an element, denoted by $1_{R}$ (called one-R) such that $(\mathrm{Ax} 10) \mathrm{a}=1_{R}{ }^{*} \mathrm{a}=\mathrm{a}^{*} 1_{R}$ for all $\mathrm{a} \in \mathrm{R}$.

Examples:
(a) $\left(\mathbb{Z},+,{ }^{*}\right)$ is a commutative ring with identity.
(b) $\left(\mathbb{Q},+,^{*}\right)$ is a commutative ring with identity.
(c) $\left(\mathbb{C},+,{ }^{*}\right)$ is a commutative ring with identity.
(d) $\left(\mathbb{R},+,{ }^{*}\right)$ is a commutative ring with identity.
(e) Let $2 \mathbb{Z}$ be the set of even integers. Then $\left(2 \mathbb{Z},+,{ }^{*}\right)$ is a commutative ring without identity.
(f) Let $\mathrm{n} \in \mathbb{Z}$ and $\mathrm{n}>1$. The set $M_{n}(\mathbb{R}$ of nxn matrices with real coefficients together with the usual addition and multiplication of matrices is a non-commutative ring with identity.

Definition 3.1.4. An integral domain is a commutative ring $R$ with identity $1_{R} \neq 0_{R}$ that satisfies:
( Ax 11 ) whenever $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ and $\mathrm{ab}=0_{R}$, then $\mathrm{a}=0_{R}$ or $\mathrm{b}=0_{R}$.
Example: $\left(\mathbb{Z},+,{ }^{*}\right)$ is an integral domain
Definition 3.1.5. A field is a commutative ring R with identity $1_{R} \neq 0_{R}$ that satisfies:
(Ax12) for each $\mathrm{a} \neq 0_{R}$ in R , the equation $\mathrm{ax}=1_{R}$ has a solution in R .
Example: $\left(\mathbb{R},+,{ }^{*}\right)$ is a field.
Theorem 3.1.1. Let $R$ and $S$ be rings. Define addition and multiplication on the Cartesian product $R x S=\{(r, s) \mid r \in R, s \in S\}$ by

$$
(r, s)+\left(r^{\prime}, s^{\prime}\right)=\left(r+r^{\prime}, s+s^{\prime}\right) \text { and }
$$

$(r, s)\left(r^{\prime}, s^{\prime}\right)=\left(r r^{\prime}, s s^{\prime}\right)$
for all $r, r^{\prime} \in R, s, s^{\prime} \in S$. Then,

1. RxS is a ring.
2. $0_{R x S}=\left(0_{R}, 0_{S}\right)$.
3. $-(r, s)=(-r,-s)$ for all $r \in R, s \in S$
4. if $R$ and $S$ are both commutative, then so is $R x S$.
5. if $R$ and $S$ both have an identity, then $R x S$ has an identity and $1_{R x S}=$ $\left(1_{R}, 1_{S}\right)$.

## Subrings

If $R$ is a ring and $S$ is a subset of $R$, then $S$ may or may not be a ring under the operations in $R$.
In the ring $\mathbb{Z}$ of integers, for example, the set of even numbers is a ring, but the set of off numbers is not.

Definition 3.1.6. When a subset of a ring $R$ is itself a ring under the addition and multiplication in $R$, then we sat that $S$ is a subring of $R$.

## Example:

(a) $\mathbb{Z}$ is a subring of ring $\mathbb{Q}$
(b) $\mathbb{Q}$ is a subring of ring $\mathbb{R}$
(c) Since $\mathbb{Q}$ is itself a field, $\mathbb{Q}$ is a subfield of ring $\mathbb{R}$

Theorem 3.1.2. Suppose that $R$ is a ring and that $S$ is a subset of $R$, such that
(i) $S$ is closed under addition (if $a, b \in S$, then $a+b \in S$ )
(ii) $S$ is closed under multiplication (if $a, b \in S$, then $a b \in S$ )
(iii) $0_{R} \in S$
(iv) If $a \in S$, then the solution of the equation $a+x=0_{R}$ is in $S$. Then $S$ is a subring of $R$.

### 3.2 Basic Properties of Rings

Theorem 3.2.1. For any element in a ring $R$, the equation $a+x=0_{R}$ has a unique solution.

Proof. We know that $\mathrm{a}+\mathrm{x}=0_{R}$ has at least one solution, say $u$, by Axiom 5 . If " $v$ " is also a solution then $\mathrm{a}+\mathrm{v}=0_{R}$ and $\mathrm{a}+\mathrm{u}=0_{R}$, so that
$\mathrm{v}=0_{R}+\mathrm{v}=(\mathrm{a}+\mathrm{u})+\mathrm{v}=(\mathrm{u}+\mathrm{a})+\mathrm{v}=\mathrm{u}+(\mathrm{a}+\mathrm{v})=\mathrm{u}+0_{R}=\mathrm{u}$.
So, $\mathrm{v}=\mathrm{u}$ and u is the only solution.
-a is the unique element in R such that $\mathrm{a}+(-\mathrm{a})=(-\mathrm{a})+\mathrm{a}=0_{R}$.
Theorem 3.2.2. If $a+b=a+c$ in a ring $R$, then $b=c$.
Proof. Adding -a to both sides of $\mathrm{a}+\mathrm{b}=\mathrm{a}+\mathrm{c}$ and then associativity and negatives, we see that

$$
\begin{aligned}
& -\mathrm{a}+(\mathrm{a}+\mathrm{b})=-\mathrm{a}+(\mathrm{a}+\mathrm{c}) \\
& (-\mathrm{a}+\mathrm{a})+\mathrm{b}=(-\mathrm{a}+\mathrm{a})+\mathrm{c} \\
& 0_{R}+\mathrm{b}=0_{R}+\mathrm{c} \\
& \mathrm{~b}=\mathrm{c}
\end{aligned}
$$

Theorem 3.2.3. For any elements $a$ and $b$ or a ring $R$,
(1) $a{ }^{*} 0_{R}=0_{R}$
(2) $a^{*}(-b)=-(a b)=(-a) b$
(3) $-(a+b)=(-a)+(-b)$
(4) $-(a-b)=-(a)+b$
(5) $(-a)(-b)=a b$
(6) $\left(-1_{R}\right) * a=-a$

Proof. (1) Since $0_{R}+0_{R}=0_{R}$ and $\mathrm{a}^{*}\left(0_{R}+0_{R}\right)=\mathrm{a}^{*} 0_{R}+\mathrm{a}^{*} 0_{R}$,
$\mathrm{a}^{*}\left(0_{R}+0_{R}\right)=\mathrm{a}^{*} 0_{R}+0_{R}$.
From Theorem 3.2.2, if $\mathrm{a}^{*} 0_{R}+\mathrm{a}^{*} 0_{R}=\mathrm{a}^{*} 0_{R}+0_{R}$, then $\mathrm{a}^{*} 0_{R}=0_{R}$.
(2) By definition, $-(\mathrm{ab})$ is the unique solution of the equation $\mathrm{ab}+\mathrm{x}=0_{R}$, and so any other solution of this equation must be equal to $-(\mathrm{ab})$. But $\mathrm{x}=\mathrm{a}(-\mathrm{b})$ is a solution because, by distributive law and (1),

$$
\mathrm{ab}+\mathrm{a}(-\mathrm{b})=\mathrm{a}[\mathrm{~b}+(-\mathrm{b})]=\mathrm{a}\left[0_{R}\right]=0_{R}
$$

Therefore, $a(-b)=-(a b)$.
The rest of the parts are proved in similar fashion.
(3) By definition, $-(\mathrm{a}+\mathrm{b})$ is the unique solution of $(\mathrm{a}+\mathrm{b})+\mathrm{x}=0_{R}$, but $(-a)+(-b)$ is also a solution:

$$
(\mathrm{a}+\mathrm{b})+[(-\mathrm{a})+(-\mathrm{b})]=\mathrm{b}+[\mathrm{a}+(-\mathrm{a})]+(-\mathrm{b})=\left(\mathrm{b}+0_{R}\right)+(-\mathrm{b})=
$$

$$
\mathrm{b}+(-\mathrm{b})=0_{R} .
$$

Therefore, by uniqueness, $-(\mathrm{a}+\mathrm{b})=(-\mathrm{a})+(-\mathrm{b})$.
(4) By definition, $-(\mathrm{a}-\mathrm{b})=-(\mathrm{a}+(-\mathrm{b}))$ and by (4) and $-(-\mathrm{a})=\mathrm{a}$, $-(a-b)=-(a+(-b))=(-a)+(-(-b))=(-a)+b$.
(5) By $-(-\mathrm{a})=\mathrm{a}$ and repeated use of (2), $(-a)(-b)=-[a(-b)]=-[-(a b)]=a b$.
(6) By (2),
$\left(-1_{R}\right)^{*} \mathrm{a}=-\left(1_{R}{ }^{*} \mathrm{a}\right)=-(\mathrm{a})=-\mathrm{a}$.
Definition 3.2.1. An element a in a ring R with identity is called a unit if $\exists u \in R: ~ \mathrm{au}=1_{R}=\mathrm{ua}$. In this case, the element u is called the multiplicative inverse of a and is denoted by $a^{-1}$.

Example:
(1) In $\mathbb{Q}$ : All numbers are units
(2) In $\mathbb{Z}$ : -1 and 1 are the only units

Theorem 3.2.4. Every field $F$ is an integral domain if a field is a commutative ring with $1_{R}$.

Proof. $\forall a \in F, a^{-1}$ exists. We need to show that if $\mathrm{ab}=0_{R}$, then either $\mathrm{a}=0_{R}$ or $\mathrm{b}=0_{R}$.
Let $\mathrm{ab}=0_{R}$. We know that $a^{-1}$ exists. So, $\left(a^{-1}\right)(\mathrm{ab})=\left(a^{-1} \mathrm{a}\right) \mathrm{b}=1_{R} \mathrm{~b}=\mathrm{b}$. But, $\left(a^{-1}\right)(\mathrm{ab})=\left(a^{-1}\right)^{*} 0_{R}=0_{R}$. So, $\mathrm{b}=0_{R}$.

Definition 3.2.2. An element a in a ring R is a zero divisor if
(1) $a \neq 0_{R}$
(2) $\exists b \neq 0_{R}, b \in R: a b=0_{R}$ or $b a=0_{R}$.

Finding units in $\mathbb{Z}_{12}$ trick:
If greatest-common-divisor $(\mathrm{a}, 12)=1$, then a is a unit,
else if greatest-common-divisor $(\mathrm{a}, 12)>1$, then a is a zero divisor.

## Theorem 3.2.5. Every finite integral domain $R$ is a field.

Proof. Since R is a commutative ring with identity $1_{R}$, we only need to show $\forall a \neq 0_{R}$, the equation ax $=1_{R}$ has a solution.

Let $a_{1}, a_{2}, \ldots, a_{n}$ be the elements of R. Suppose $a_{t} \neq 0_{R}$. Then, $a_{t} a_{1}, a_{t} a_{2}, \ldots, a_{t} a_{n}$ is also R. If $a_{i} \neq a_{j}$, then we must have $a_{t} a_{i} \neq a_{t} a_{j}$ (because if $a_{t} a_{i}=a_{t} a_{j} \Longrightarrow$ $a_{i}=a_{j} .\left(a_{t} a_{i}-a_{t} a_{j}=0_{R}, a_{t}\left(a_{i}-a_{j}\right)=0_{R} \Longrightarrow a_{t}=0_{R}\right.$ or $a_{i}=a_{j}$, but $a_{t} \neq$ $0_{R}$, so $a_{i}=a_{j}$ ).
Therefore, $a_{t} a_{1}, a_{t} a_{2}, \ldots, a_{t} a_{n}$ are n distinct elements of R . However, R has exactly $n$ elements all together, and so these must be all the elements of R in some order. For some $\mathrm{j}, a_{t} a_{j}=1_{R}$. Therefore, $\mathrm{ax}=1_{R}$ has a solution and R is a field.

Sample Exercise: Let R be a ring such that $x^{2}=x \forall x \in R$. Prove that R is commutative.
Solution:

We have to show that $\mathrm{xy}=\mathrm{yx} \forall x, y \in R$
$x^{2}=x$
$\mathrm{x}+\mathrm{x}=2 \mathrm{x}$
$(x+x)^{2}=(2 x)^{2}=4 x^{2}=4 \mathrm{x}$
However, $(2 x)^{2}=2 \mathrm{x}$. So, $2 \mathrm{x}=4 \mathrm{x} \Longrightarrow 2 \mathrm{x}=0_{R}$.
$(x+y)^{2}=\mathrm{x}+\mathrm{y}$
$\Longrightarrow x^{2}+y^{2}+\mathrm{xy}+\mathrm{yx}=\mathrm{x}+\mathrm{y}$
$\Longrightarrow \mathrm{x}+\mathrm{y}+\mathrm{xy}+\mathrm{yx}=\mathrm{x}+\mathrm{y}$
$\Longrightarrow \mathrm{xy}+\mathrm{yx}=0_{R}$
$\Longrightarrow \mathrm{xy}+\mathrm{yx}-2(\mathrm{xy})=0_{R}$
$\Longrightarrow y x=x y$

### 3.3 Isomorphisms and Homomorphisms

Definition 3.3.1. A ring $R$ is isomorphic to a ring $S$ (denoted by $R \cong S$ ) if there is a function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{S}$ such that
(i) f is injective
(ii) $f$ is surjective
(iii) $\mathrm{f}(\mathrm{a}+\mathrm{b})=\mathrm{f}(\mathrm{a})+\mathrm{f}(\mathrm{b})$ and $\mathrm{f}(\mathrm{ab})=\mathrm{f}(\mathrm{a}) \mathrm{f}(\mathrm{b}) \forall a, b \in R$ The function f is called an isomorphism.
Definition 3.3.2. Let $R$ and $S$ be rings. A function $f: R \rightarrow S$ is said to be homomorphic if
$\mathrm{f}(\mathrm{a}+\mathrm{b})=\mathrm{f}(\mathrm{a})+\mathrm{f}(\mathrm{b})$ and $\mathrm{f}(\mathrm{ab})=\mathrm{f}(\mathrm{a}) \mathrm{f}(\mathrm{b}) \forall a, b \in R$
Hence, every isomorphism is a homomorphism.
Theorem 3.3.1. Let $f: R \rightarrow S$ be a homomorphism of rings. Then
(1) $f\left(0_{R}\right)=0_{S}$
(2) $f(-a)=-f(a) \forall a \in R$
(3) $f(a-b)=f(a)-f(b) \forall a, b \in R$

If $R$ is a ring with identity, and $f$ is surjective then
(4) $S$ is a ring with identity and $f\left(1_{R}\right)=1_{S}$
(5) whenever there is a unit in $R$, then $f(u)$ is a unit in $S$ and $f\left(u^{-1}\right)=(f(u))^{-1}$.

Proof. (1) $\forall a \in R, a+0_{R}=a$.

$$
\mathrm{f}\left(\mathrm{a}+0_{R}\right)=\mathrm{f}(\mathrm{a})+\mathrm{f}\left(0_{R}\right) \quad \text { (by homomorphism) }
$$

$\Longrightarrow \mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{a})+\mathrm{f}\left(0_{R}\right)$. So, $\mathrm{f}\left(0_{R}\right)$ is the addition identity in S .

$$
\begin{aligned}
\text { (2) } \mathrm{f}(\mathrm{a})+\mathrm{f}(-\mathrm{a}) & =\mathrm{f}(\mathrm{a}-\mathrm{a}) \\
& =\mathrm{f}\left(0_{R}\right)=0_{S}
\end{aligned}
$$

Since, $f(a) \in S$, which is also a ring, $f(a)$ has an additive inverse such that $\mathrm{f}(\mathrm{a})+(-\mathrm{f}(\mathrm{a}))=0_{S}$. Hence, $\mathrm{f}(-\mathrm{a})=-\mathrm{f}(\mathrm{a})$.
(3) $\mathrm{f}(\mathrm{a}+(-\mathrm{b}))=\mathrm{f}(\mathrm{a})+\mathrm{f}(-\mathrm{b})=\mathrm{f}(\mathrm{a})-\mathrm{f}(\mathrm{b})$
(4) $\forall a \in R, \mathrm{f}(\mathrm{a})=\mathrm{f}\left(\mathrm{a}^{*} 1_{R}\right)=\mathrm{f}(\mathrm{a})^{*} \mathrm{f}\left(1_{R}\right) \quad$ (by homomorphism) Then $\mathrm{f}\left(1_{R}\right)$ is the multiplicative identity in S and $\mathrm{f}\left(1_{R}\right)=1_{S}$.
(5) Since u is a unit in $\mathrm{R}, \exists v \in R$ such that $\mathrm{uv}=1_{R}=\mathrm{vu}$.

Hence by (4),

$$
\mathrm{f}(\mathrm{u}) \mathrm{f}(\mathrm{v})=\mathrm{f}(\mathrm{uv})=\mathrm{f}\left(1_{R}\right)=1_{S}
$$

Similarly, $\mathrm{vu}=1_{R}$ implies that $\mathrm{f}(\mathrm{v}) \mathrm{f}(\mathrm{u})=1_{S}$.
Therefore, $\mathrm{f}(\mathrm{u})$ is a unit in S where $(f(u))^{-1}=\mathrm{f}(\mathrm{v})$.
Since, $\mathrm{v}=u^{-1},(f(u))^{-1}=\mathrm{f}\left(u^{-1}\right)$.
Corollary 3.3.1.1. If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{S}$ is a homomorphism of rings, then the image of f is a subring of S .

Proof. We need to check if $f(R)$ is a subring.
(Subring Ax3) $0_{R} \in S$
$\mathrm{f}\left(0_{R}\right)=0_{S}$. Hence, $0_{S} \in f(R)$
(Subring Ax1) $f(a+b)=f(a)+f(b)$, where $f(a) \in f(R)$ and $f(b) \in f(R)$ (by homomorphism)
(Subring Ax2) $f(a b)=f(a) f(b)$, where $f(a) \in f(R)$ and $f(b) \in f(R)$ (by homomorphism)
(Subring Ax4) Addition inverse holds by Theorem 3.3.1 (2)
Hence, $f(R)$ is a subring.

## Questions:-

(1) Does homomorphism exist between $\mathbb{Q}$ and $\mathbb{Z}$ ?

Answer: $\mathbb{Q}$ has infinitely many units whereas $\mathbb{Z}$ has only two units: $-1,1$. So no homomorphism exists.
(2) Prove $\mathbb{Z}_{12} \xrightarrow{f} \mathbb{Z}_{3} x \mathbb{Z}_{4}$.

Answer:
Identity of $\mathbb{Z}_{12}=1$
Identity of $\mathbb{Z}_{3} x \mathbb{Z}_{4}=(1,1)$
Hence, $\mathrm{f}(1)=(1,1)$
$\mathrm{f}(2)=\mathrm{f}(1+1)=\mathrm{f}(1)+\mathrm{f}(1)=(1,1)+(1,1)=(2,2)$
$\mathrm{f}(3)=(0,3)$
$\mathrm{f}(4)=(1,0)$
$\mathrm{f}(5)=(2,1)$
$\mathrm{f}(6)=(0,2)$
$\mathrm{f}(7)=(1,3)$
$\mathrm{f}(8)=(2,0)$
$f(9)=(0,1)$
$\mathrm{f}(10)=(1,2)$
$\mathrm{f}(11)=(2,3)$
$\mathrm{f}(0)=(0,0)$
Hence, f is Injective and Surjective.
$\mathrm{f}(\mathrm{a}+\mathrm{b})=\mathrm{f}(\mathrm{a})+\mathrm{f}(\mathrm{b})$
$\mathrm{f}\left([a]_{12}+[b]_{12}\right)=\mathrm{f}\left([a+b]_{12}\right)=\left([a+b]_{3},[a+b]_{4}\right)=\left([a]_{3}+[b]_{3},[a]_{4}+[b]_{4}\right)=$
$\left([a]_{3},[a]_{4}\right)+\left([b]_{3},[b]_{4}\right)=\mathrm{f}\left([a]_{12}\right)+\mathrm{f}\left([b]_{12}\right)$
Hence, f is isomorphic.

Question: For $\mathbb{Z}_{4}$ and $\mathbb{Z}_{2} x \mathbb{Z}_{2}$, check if isomorphic.

## Answer:

Cardinality is the same.
$\mathrm{f}(1)=(1,1)$
(identity maps to identity)
$\mathrm{f}(1+1)=(0,0)$
$\mathrm{f}(0)=(0,0)=\mathrm{f}(2)$.
f is not injective so no isomorphic.

Question: For $\mathbb{Z}_{8}$ and $\mathbb{Z}_{2} x \mathbb{Z}_{4}$, check if isomorphic.

## Answer:

Cardinality is the same.
$\mathrm{f}(1)=(1,1) \quad \mathrm{f}(1+1)=(0,2)$
$\mathrm{f}(4)=(0,0)=\mathrm{f}(0)$.
f is not injective so no isomorphic.

Trick: $\mathbb{Z}_{m * n} \cong \mathbb{Z}_{m} x \mathbb{Z}_{n} \Longleftrightarrow$ greatest-common-divisor $(\mathrm{n}, \mathrm{m})=1$ (i.e. m and $n$ are relatively prime).

Theorem 3.3.2. Suppose $R$ is a commutative ring and $f: R \rightarrow S$ is an isomorphism. Then, $S$ is also a commutative ring.

Proof. $\forall a, b \in R, \mathrm{ab}=$ ba. $\mathrm{f}(\mathrm{ab})=\mathrm{f}(\mathrm{a}) \mathrm{f}(\mathrm{b})$. Also, $\mathrm{f}(\mathrm{ba})=\mathrm{f}(\mathrm{b}) \mathrm{f}(\mathrm{a})$. So, $\mathrm{f}(\mathrm{ab})$ $=\mathrm{f}(\mathrm{ba})$. Hence, S is commutative. Furthermore, by surjective property for any $c, d$ in $S$, we can always find two elements a and b such that $f(a)=c$ and $f(b)$ $=d$. For any two elements in $S$, show that $c d=d c$, i.e. show whether $f(a b)=$ $f(a) f(b)=f(b) f(a)=f(b a)$ where $a \neq b$.
Since $a b=b a, S$ is commutative.

$$
M_{2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\} \not \equiv \mathbb{R}^{4} \text { because }\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}
$$

is non-commutative and $\mathbb{R}^{4}$ is commutative.
Checking for isomorphism:
(1) Cardinality
(2) Both commutative
(3) Add several times until 0 is achieved.

