MTH 310: Abstract Algebra - Notes

Debayan Deb

Spring 2015

Chapter 1

Review

1.1 Statements and Logic

A statement is a sentence which is either true or false. For example,

- i. $\sqrt{2}$ is a rational number (False)
- ii. Exactly 1323 bald eagle were born in 2000 B.C. (Not a statement)
- iii. π is a real number (True)

Let P and Q be statements. The corresponding truth table with various operators looks like:

T T T T T P notP T T T F F T F T F T F	Т
	F
F T F F T F T F T	Т
F F F F	Т
$ P Q Q \text{ or not } P P Q P \Leftrightarrow Q P Q \text{ not } Q \Longrightarrow \text{ not}$	P
T T T T T T T T	
TFFFFFFFFF	
F T F T F T	
F F T F F T	

 $P \iff Q$ means that P is true if and only if Q is true. As we see from the tables above, $P \implies Q \iff \text{not } Q \implies \text{not } P$. Also ((P and Q) or R) \iff ((P or R) and (Q or R)).

Theorem 1.1.1. (Principal Substitution) Let $\Phi(x)$ be a formula involving a variable x. For an object d, let $\Phi(d)$ be the formula obtained from $\Phi(x)$ by replacing all occurances of x by d. If a and b are objects with a = b, then $\Phi(a) = \Phi(b)$. $\Phi(x)$ is then known as a well-defined function.

1.2 Sets

A set is a collection of objects. For example, The set of integers $\mathbb{Z} := \{..., -2, -1, 0, 1, 2, ...\}$.

1.4 Mathematical Induction

Theorem 1.4.1. (Principal os Mathematical Induction) Suppose that for each $n \in \mathbb{N}$, a statement P(n) is given and that

(i) P(0) is true. (ii) If P(k) is true for some $k \in \mathbb{N}$, then P(k+1) is also true. Then P(n) is true $\forall n \in \mathbb{N}$.

1.5 Equivalence Relation

Definition 1.5.1. Let \sim be a relation on a set A (that is a relation from A and A). Then

- (a) ~ is called reflexive if a~a $\forall a \in A$
- (b) ~ is called symmetric if b~a $\forall a, b \in A$ with a~b, i.e. a~b \iff b~a
- (c) ~ is called transitive if a~c $\forall a,b,c \in A$ with a~b and b~c, i.e. (a~b) and (b~c) \implies a~c

 \sim is called an equivalence relation if \sim is reflexive, symmetric and transitive.

Examples:

(1) Consider the relation " \leq " on the real numbers.

Not symmetric because $1 \le 2$ but $2 \le 1$ and hence, " \le " is not an equivalence relation.

(2) Consider the relation "=" on the real numbers.

"=" is an equivalence relation because it is reflexive, symmetric and transitive.

(3) Consider the relation " $r \sim s$ if |r| = |s|".

"r~s if $|\mathbf{r}|=|\mathbf{s}|$ " is an equivalence relation because it is reflexive, symmetric and transitive

Let $a \in \mathbb{Z}$. Then $[a]_n$ is the equivalence class with respect to " $\equiv \pmod{n}$ ". Consider the relation " $\equiv \pmod{2}$ ":

 $[1]_2 = \{b \in \mathbb{Z} \mid 1 \equiv b(mod2)\} \\= \{b \in \mathbb{Z} \mid b \text{ is odd}\} \\ [0]_2 = \{b \in \mathbb{Z} \mid 0 \equiv b(mod2)\} \\= \{b \in \mathbb{Z} \mid b \text{ is even}\}$

Consider the relation " $\equiv \pmod{5}$ ": $\left[0\right]_{k} = \left\{5k \mid k \in \mathbb{Z}\right\}$

$$[0]_{5} = \{5k \mid k \in \mathbb{Z}\}\$$

$$= \{..., -10, -5, 0, 5, 10, ...\}\$$

$$[1]_{5} = \{5k + 1 \mid k \in \mathbb{Z}\}\$$

$$= \{..., -9, -4, 1, 6, 11, ...\}\$$

$$[2]_{5} = \{5k + 2 \mid k \in \mathbb{Z}\}\$$

$$= \{..., -8, -3, 2, 7, 12, ...\}\$$

$$[3]_{5} = \{5k + 3 \mid k \in \mathbb{Z}\}\$$

$$= \{..., -7, -2, 3, 8, 13, ...\}\$$

$$[4]_{5} = \{5k + 4 \mid k \in \mathbb{Z}\}\$$

$$= \{..., -6, -1, 4, 9, 14, ...\}\$$

Let \sim be an equivalence relation on the set A and $a, b \in A$. The the following statements are equivalent:

(a) $a \sim b$ (b) $b \in [a]$ (c) $[a] \cap [b] \neq \phi$ (d) [a] = [b](e) $a \in [b]$ (f) $b \sim a$ where $[a] := \{b \in A \mid a \sim b\}$

Proof. 1. (a) \implies (b). Suppose that a~b. Since, $[a] := \{b \in A \mid a \sim b\} \implies b \in [a].$

2. (b) \Longrightarrow (c). Suppose that $b \in [a]$. Since, \sim is reflexive, $b \sim b$. So, $b \in [b]$. Thus, $b \in [a] \cap [b]$. Therefore, $[a] \cap [b] \neq \phi$.

3. (c) \Longrightarrow (d). Suppose that $[a] \cap [b] \neq \phi$, then $\exists c \text{ such that } c \in [a] \cap [b]$. Let $d \in [a]$. Then, a~d and since, $c \in [a]$, a~c, and also, c~a. So, by transitivity, c~d, we know that $c \in [b] \Longrightarrow c \sim b \Longrightarrow d \in [b] \Longrightarrow [a] \subseteq [b]$.

4. (d) \implies (e). Suppose that [a]=[b]. Since, a is reflexive, a~a, so a \in [a]. Since, [a] = [b], a \in [b].

5. (e) \implies (f). Suppose $a \in [b]$. Also, $[b] := \{e \in A \mid b \sim e\}$. So, $b \sim a$.

6. (f) \implies (a) by symmetricity.

Chapter 3

Rings

3.1 Definitions and Examples of Rings

Definition 3.1.1. A ring is a triple (R, +, *) such that

(i) R is a set

(ii) '+' is a function (called Ring Addition) and RxR is a subset of the domain of "+". For $(a,b)\in RxR$, a+b denotes the image of (a,b) under '+'

(iii) '*' is a function (called Ring Multiplication) and RxR is a subset of the domain of "*". For $(a,b)\in RxR$, a*b (and also ab) denotes the image of (a,b) under '*'

and such that the following axioms hold:

(closure of addition) (Ax1) $a+b\in R$ for all $a,b\in R$ (Ax2) a+(b+c) = (a+b)+c for all $a,b,c \in \mathbb{R}$ (associative addition) (Ax3) a+b = b+a for all $a,b\in \mathbb{R}$ (commutative addition) (Ax4) \exists an element in R, denoted by 0_R (called the zero-R) such that a = a + a 0_R and $a = 0_R + a$ for all $a \in \mathbb{R}$ (additive identity) (Ax5) For each $a \in \mathbb{R}$, there exists an element in \mathbb{R} , denoted by -a (negative a) such that $a + (-a) = 0_R$ (additive inverse) (Ax6) ab $\in \mathbb{R}$ for all a, b $\in \mathbb{R}$ (closure of multiplication) $(Ax7) a(bc) = (ab)c \text{ for all } a,b,c \in \mathbb{R}$ (associative multiplication) (Ax8) a(b+c) = ab + bc for all $a,b,c \in \mathbb{R}$ (distributive laws)

Examples: $(\mathbb{Q},+,*)$ is a ring $(\mathbb{N},+,*)$ is a not ring as it does not have 0_R $(M_2(\mathbb{R}),+,*)$ is a ring, where $M_2(\mathbb{R})$ is a 2x2 matrix over \mathbb{R}

Definition 3.1.2. Let R be a ring. Then R is called commutative if (Ax9) ab = ba for all $a,b\in R$ (commutative multiplication)

Definition 3.1.3. Let R be a ring. We say that R is a ring with identity if \exists

an element, denoted by 1_R (called one-R) such that (Ax10) $a = 1_R^* a = a^* 1_R$ for all $a \in \mathbb{R}$.

(multiplicative identity)

Examples:

- (a) $(\mathbb{Z},+,*)$ is a commutative ring with identity.
- (b) $(\mathbb{Q},+,*)$ is a commutative ring with identity.
- (c) $(\mathbb{C},+,*)$ is a commutative ring with identity.
- (d) $(\mathbb{R},+,*)$ is a commutative ring with identity.
- (e) Let 2ℤ be the set of even integers. Then (2ℤ,+,*) is a commutative ring without identity.

(f) Let $n \in \mathbb{Z}$ and n > 1. The set $M_n(\mathbb{R} \text{ of } nxn \text{ matrices with real coefficients together with the usual addition and multiplication of matrices is a$ **non-commutative ring with identity**.

Definition 3.1.4. An integral domain is a commutative ring R with identity $1_R \neq 0_R$ that satisfies:

(Ax11) whenever $a,b\in \mathbb{R}$ and $ab=0_R$, then $a=0_R$ or $b=0_R$.

Example: $(\mathbb{Z},+,*)$ is an integral domain

Definition 3.1.5. A field is a commutative ring R with identity $1_R \neq 0_R$ that satisfies:

(Ax12) for each $a \neq 0_R$ in R, the equation $ax=1_R$ has a solution in R.

Example: $(\mathbb{R},+,^*)$ is a field.

Theorem 3.1.1. Let R and S be rings. Define addition and multiplication on the Cartesian product $RxS = \{(r, s) \mid r \in R, s \in S\}$ by

(r,s) + (r',s') = (r+r',s+s') and

(r,s)(r',s') = (rr',ss')

for all $r, r' \in R$, $s, s' \in S$. Then, 1 BrS is a ring

2. $0_{RxS} = (0_R, 0_S).$

3. -(r,s) = (-r,-s) for all $r \in R, s \in S$

4. if R and S are both commutative, then so is RxS.

5. if R and S both have an identity, then RxS has an identity and $1_{RxS} = (1_R, 1_S)$.

Subrings

If R is a ring and S is a subset of R, then S may or may not be a ring under the operations in R.

In the ring \mathbb{Z} of integers, for example, the set of even numbers is a ring, but the set of off numbers is not.

Definition 3.1.6. When a subset of a ring R is itself a ring under the addition and multiplication in R, then we sat that S is a **subring** of R.

Example:

(a) $\mathbb Z$ is a subring of ring $\mathbb Q$

(b) $\mathbb Q$ is a subring of ring $\mathbb R$

(c) Since $\mathbb Q$ is itself a field, $\mathbb Q$ is a ${\bf subfield}$ of ring $\mathbb R$

Theorem 3.1.2. Suppose that R is a ring and that S is a subset of R, such that

(i) S is closed under addition (if $a, b \in S$, then $a+b \in S$)

(ii) S is closed under multiplication (if $a, b \in S$, then $ab \in S$)

(iii) $0_R \in S$

(iv) If $a \in S$, then the solution of the equation $a + x = 0_R$ is in S. Then S is a subring of R.

3.2 Basic Properties of Rings

Theorem 3.2.1. For any element in a ring R, the equation $a + x = 0_R$ has a unique solution.

Proof. We know that $a + x = 0_R$ has at least one solution, say u, by Axiom 5. If "v" is also a solution then $a + v = 0_R$ and $a + u = 0_R$, so that

 $\mathbf{v} = \mathbf{0}_R + \mathbf{v} = (\mathbf{a} + \mathbf{u}) + \mathbf{v} = (\mathbf{u} + \mathbf{a}) + \mathbf{v} = \mathbf{u} + (\mathbf{a} + \mathbf{v}) = \mathbf{u} + \mathbf{0}_R = \mathbf{u}.$ So, $\mathbf{v} = \mathbf{u}$ and \mathbf{u} is the only solution.

-a is the unique element in R such that $a + (-a) = (-a) + a = 0_R$.

Theorem 3.2.2. If a + b = a + c in a ring R, then b = c.

Proof. Adding -a to both sides of a + b = a + c and then associativity and negatives, we see that

-a + (a + b) = -a + (a + c)(-a + a) + b = (-a + a) + c $0_R + b = 0_R + c$ b = c

Theorem 3.2.3. For any elements a and b or a ring R,

(1) $a^{*}0_{R} = 0_{R}$ (2) $a^{*}(-b) = -(ab) = (-a)b$ (3) -(a+b) = (-a)+(-b)(4) -(a-b) = -(a) + b(5) (-a)(-b) = ab(6) $(-1_{R})^{*}a = -a$

Proof. (1) Since $0_R + 0_R = 0_R$ and $a^*(0_R + 0_R) = a^*0_R + a^*0_R$, $a^*(0_R + 0_R) = a^*0_R + 0_R$. From Theorem 3.2.2, if $a^*0_R + a^*0_R = a^*0_R + 0_R$, then $a^*0_R = 0_R$.

(2) By definition, -(ab) is the unique solution of the equation ab + x = 0_R, and so any other solution of this equation must be equal to -(ab). But x = a(-b) is a solution because, by distributive law and (1), ab + a(-b) = a[b + (-b)] = a[0_R] = 0_R.

Therefore, a(-b) = -(ab).

The rest of the parts are proved in similar fashion.

(3) By definition, -(a+b) is the unique solution of $(a+b) + x = 0_R$, but (-a) + (-b) is also a solution:

 $(a+b) + [(-a) + (-b)] = b + [a + (-a)] + (-b) = (b + 0_R) + (-b) = b + (-b) = 0_R.$

Therefore, by uniqueness, -(a+b) = (-a) + (-b).

⁽⁴⁾ By definition, -(a - b) = -(a + (-b)) and by (4) and -(-a) = a, -(a-b) = -(a + (-b)) = (-a) + (-(-b)) = (-a) + b.

Definition 3.2.1. An element a in a ring R with identity is called a **unit** if $\exists u \in R$: au = 1_R = ua. In this case, the element u is called the **multiplicative inverse** of a and is denoted by a^{-1} .

Example:

(1) In \mathbb{Q} : All numbers are units

(2) In \mathbb{Z} : -1 and 1 are the only units

Theorem 3.2.4. Every field F is an integral domain if a field is a commutative ring with 1_R .

Proof. $\forall a \in F, a^{-1}$ exists. We need to show that if $ab = 0_R$, then either $a = 0_R$ or $b = 0_R$.

Let $ab = 0_R$. We know that a^{-1} exists. So, $(a^{-1})(ab) = (a^{-1}a)b = 1_Rb = b$. But, $(a^{-1})(ab) = (a^{-1})^* 0_R = 0_R$. So, $b = 0_R$.

Definition 3.2.2. An element a in a ring R is a zero divisor if

(1) $a \neq 0_R$

(2) $\exists b \neq 0_R, b \in R: ab = 0_R \text{ or } ba = 0_R.$

Finding units in \mathbb{Z}_{12} trick:

If greatest-common-divisor(a,12) = 1, then a is a unit,

else if greatest-common-divisor(a,12) > 1, then a is a zero divisor.

Theorem 3.2.5. Every finite integral domain R is a field.

Proof. Since R is a commutative ring with identity 1_R , we only need to show $\forall a \neq 0_R$, the equation ax = 1_R has a solution.

Let $a_1, a_2, ..., a_n$ be the elements of R. Suppose $a_t \neq 0_R$. Then, $a_t a_1, a_t a_2, ..., a_t a_n$ is also R. If $a_i \neq a_j$, then we must have $a_t a_i \neq a_t a_j$ (because if $a_t a_i = a_t a_j \implies a_i = a_j$. $(a_t a_i - a_t a_j = 0_R, a_t (a_i - a_j) = 0_R \implies a_t = 0_R$ or $a_i = a_j$, but $a_t \neq 0_R$, so $a_i = a_j$).

Therefore, $a_t a_1, a_t a_2, ..., a_t a_n$ are n distinct elements of R. However, R has exactly n elements all together, and so these must be all the elements of R in some order. For some j, $a_t a_j = 1_R$. Therefore, $ax = 1_R$ has a solution and R is a field.

Sample Exercise: Let R be a ring such that $x^2 = x \ \forall x \in R$. Prove that R is commutative.

Solution:

We have to show that $xy = yx \ \forall x, y \in R$ $x^2 = x$ x + x = 2x $(x + x)^2 = (2x)^2 = 4x^2 = 4x$ However, $(2x)^2 = 2x$. So, $2x = 4x \implies 2x = 0_R$. $(x + y)^2 = x + y$ $\implies x^2 + y^2 + xy + yx = x + y$ $\implies x + y + xy + yx = x + y$ $\implies xy + yx = 0_R$

 $\implies xy + yx - 2(xy) = 0_R$ $\implies yx = xy$

3.3 Isomorphisms and Homomorphisms

Definition 3.3.1. A ring R is **isomorphic** to a ring S (denoted by $R\cong S$) if there is a function $f:R\rightarrow S$ such that

(i) f is injective

(ii) f is surjective

(iii) f(a+b) = f(a) + f(b) and $f(ab) = f(a)f(b) \forall a, b \in R$ The function f is called an isomorphism.

Definition 3.3.2. Let R and S be rings. A function $f: R \rightarrow S$ is said to be homomorphic if

f(a+b) = f(a) + f(b) and $f(ab) = f(a)f(b) \ \forall a, b \in R$

Hence, every isomorphism is a homomorphism.

Theorem 3.3.1. Let f:R→S be a homomorphism of rings. Then
(1) f(0_R) = 0_S
(2) f(-a) = -f(a) ∀a ∈ R
(3) f(a-b) = f(a) - f(b) ∀a, b ∈ R
If R is a ring with identity, and f is surjective then
(4) S is a ring with identity and f(1_R) = 1_S
(5) whenever there is a unit in R, then f(u) is a unit in S and f(u⁻¹) = (f(u))⁻¹.
Proof. (1) ∀a ∈ R, a + 0_R = a.
f(a + 0_R) = f(a) + f(0_R)
(by homomorphism)
⇒ f(a) = f(a) + f(0_R). So, f(0_R) is the addition identity in S.

(2)
$$f(a) + f(-a) = f(a-a)$$
 (by homomorphism)
= $f(0_R) = 0_S$.

Since, $f(a) \in S$, which is also a ring, f(a) has an additive inverse such that $f(a) + (-f(a)) = 0_S$. Hence, f(-a) = -f(a).

(3)
$$f(a + (-b)) = f(a) + f(-b) = f(a) - f(b)$$
 (by (2))

(4) $\forall a \in R$, $f(a) = f(a^*1_R) = f(a)^* f(1_R)$ (by homomorphism) Then $f(1_R)$ is the multiplicative identity in S and $f(1_R) = 1_S$.

(5) Since u is a unit in R, $\exists v \in R$ such that $uv = 1_R = vu$. Hence by (4), $f(u)f(v) = f(uv) = f(1_R) = 1_S$. Similarly, $vu = 1_R$ implies that $f(v)f(u) = 1_S$. Therefore, f(u) is a unit in S where $(f(u))^{-1} = f(v)$. Since, $v = u^{-1}$, $(f(u))^{-1} = f(u^{-1})$.

Corollary 3.3.1.1. If $f: \mathbb{R} \to S$ is a homomorphism of rings, then the image of f is a subring of S.

Proof. We need to check if f(R) is a subring.(Subring Ax3) $0_R \in S$
 $f(0_R) = 0_S$. Hence, $0_S \in f(R)$ (Subring Ax1) f(a+b) = f(a) + f(b), where $f(a) \in f(R)$ and $f(b) \in f(R)$ (by
homomorphism)(Subring Ax2) f(ab) = f(a)f(b), where $f(a) \in f(R)$ and $f(b) \in f(R)$ (by
homomorphism)(Subring Ax4) Addition inverse holds by Theorem 3.3.1 (2)□

Questions:-

(1) Does homomorphism exist between \mathbb{Q} and \mathbb{Z} ? Answer: \mathbb{Q} has infinitely many units whereas \mathbb{Z} has only two units: -1, 1. So no homomorphism exists.

(2) Prove $\mathbb{Z}_{12} \xrightarrow{f} \mathbb{Z}_3 \ x \ \mathbb{Z}_4$. Answer: Identity of $\mathbb{Z}_{12} = 1$ Identity of $\mathbb{Z}_3 \ x \ \mathbb{Z}_4 = (1,1)$ Hence, f(1) = (1,1)f(2) = f(1 + 1) = f(1) + f(1) = (1,1) + (1,1) = (2,2)f(3) = (0,3)f(4) = (1,0)f(5) = (2,1)f(6) = (0,2)f(7) = (1,3)f(8) = (2,0)f(9) = (0,1)f(10) = (1,2)f(11) = (2,3)f(0) = (0,0)Hence, f is Injective and Surjective. f(a+b) = f(a) + f(b) $f([a]_{12} + [b]_{12}) = f([a+b]_{12}) = ([a+b]_3, [a+b]_4) = ([a]_3 + [b]_3, [a]_4 + [b]_4) = ([a]_{12} + [b]_{12}) = ([a+b]_{12}) = ([a+b$ $([a]_3, [a]_4) + ([b]_3, [b]_4) = f([a]_{12}) + f([b]_{12})$

Hence, f is isomorphic.

f(1 + 1) = (0,0)f(0) = (0,0) = f(2).

Question: For \mathbb{Z}_4 and $\mathbb{Z}_2 \ x \ \mathbb{Z}_2$, check if isomorphic. Answer: Cardinality is the same. f(1) = (1,1) (iden

(identity maps to identity)

f is not injective so no isomorphic.

Question: For \mathbb{Z}_8 and $\mathbb{Z}_2 \ x \ \mathbb{Z}_4$, check if isomorphic. Answer:

Cardinality is the same. f(1) = (1,1) f(1 + 1) = (0,2) f(4) = (0,0) = f(0).f is not injective so no isomorphic.

Trick: $\mathbb{Z}_{m*n} \cong \mathbb{Z}_m \ x \ \mathbb{Z}_n \iff$ greatest-common-divisor(n,m) = 1 (i.e. m and n are relatively prime).

Theorem 3.3.2. Suppose R is a commutative ring and $f:R \rightarrow S$ is an isomorphism. Then, S is also a commutative ring.

Proof. $\forall a, b \in R$, ab = ba. f(ab) = f(a)f(b). Also, f(ba) = f(b)f(a). So, f(ab) = f(ba). Hence, S is commutative. Furthermore, by surjective property for any c,d in S, we can always find two elements a and b such that f(a) = c and f(b) = d. For any two elements in S, show that cd = dc, i.e. show whether f(ab) = f(a)f(b) = f(b)f(a) = f(ba) where $a \neq b$. Since ab = ba, S is commutative. \Box

$$M_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{R} \right\} \not\cong \mathbb{R}^4 \text{ because } \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{R} \right\}$$

is non-commutative and \mathbb{R}^4 is commutative.

Checking for isomorphism:

- (1) Cardinality
- (2) Both commutative
- (3) Add several times until 0 is achieved.